Aligning Security and Usability with Key Continuity Management

Simson L. Garfinkel
Harvard Center for Research on Computation and Society
http://www.simson.net/
I’ve been doing Security & Usability.

There seem to be two main ways that this work has proceeded:

- Work on authentication (hard problem).
- Work on new interfaces.
- Work on underlying rules and principles.
I’m taking a different track for aligning security and usability:

✔ Re-evaluating underlying models and mechanisms so that we can get more security with our existing interfaces.
 • File Sanitization
 • Secure Messaging

✔ Finding the best ideas and trying to put them all in one place.

✔ Working with vendors like Microsoft and Apple to incorporate these ideas into their products.
First project: Hard drive deletion

- Many of the disks contained confidential information [Garfinkel & Shelat, IEEE S&P ’03]
- Most of the confidential information could only be recovered using forensic tools.
- Hypothesis: people had been trying to erase the info, but their tools were not very good.

The trace-back study revealed that many cases involved the failure of a trusted organization or individual to correctly sanitize the drive before disposing of it.
Second Project: Email security survey

- Survey of 470 Amazon.com merchants in US and UK.
- 20% had been receiving S/MIME-signed messages for a year.
- Majority (72%) thought that receipts sent from merchants should be digitally signed, sealed with encryption or both

— Garfinkel et. al, FC2005 and CHI2005
Third Project: Enabling Email security through opportunistic encryption and Key Continuity Management

- Stream — an opportunistic PGP proxy
- CoPilot — a design of Stream for S/MIME
- Johnny 2 — a user test of CoPilot
This presentation focuses on the use and promise of Key Continuity Management

1. Why KCM can help solve the secure messaging problem

2. CoPilot: Implementing KCM with S/MIME and Outlook Express

3. Johnny 2: A user test of KCM
Secure Messaging — email that is *signed* and *sealed* — seems to be the grand challenge of usability and security.

- Public key cryptography was developed for secure messaging.
- This project is nearly thirty years old:
 - 1976 — Diffie Helman
 - 1977 — RSA
 - 1987 — RFC 989 (PEM)
 - 1991 — PGP Released
 - 1996 — S/MIME
- Today we use public key cryptography for SSH, SSL, and code signing — but there’s virtually no secure email.

Either it’s really hard to get this right, or nobody really cares.
People do care about email security.
(Garfinkel et al, FC05)

In our study of Amazon.com merchants:

- 59% thought that email receipts from online merchants should be digitally signed.
- 47% thought receipts should be sealed

And they have the tools — sort of.

- 45% respondents would upgrade their email client to get more security.
- 54% of those using S/MIME-capable mail clients didn’t know that they could receive digitally signed mail!
We should also want email security, because security could help with the largest security threats we face today:

- Phishing
- Spam

These threats can be addressed with signing alone.

So why is nobody sending signed mail? Why don’t businesses like VeriSign send signed mail???
Gutmann argues that the emphasis on certification has been a distraction. [Gutmann 05]

STARTTLS in SMTP, POP and IMAP has secured far more email than S/MIME or PGP.

Most of these certificates appear to be self-signed.
Perhaps the problem is that the CA approach is fundamentally not very usable.

Recall that a certificate is a statement signed by a CA that binds a key to a particular Common Name (CN):

The theory is that humans understand names, not public keys.
Ellison argues that certified names are useless because names are not unique, not even within a company. [Ellison 02]

Certification has proven to be the hard problem that is gating secure email.
An alternative is to directly certify relationships:

We rarely want to send confidential information on the first try. We first verify that the person can receive it, that they are reading their mail, etc.
PGP avoided this problem

Phil Zimmerman handed me PGP 2.0 on a floppy with his key.

At that same party, somebody else gave me their key’s fingerprint on a business card.

Today if you want to email somebody, you get their PGP key off their web page — or ask them to email you their PGP key.
The Stream SMTP and POP transparent proxy was a kind of automatic PGP assistant. [Garfinkel DGo’03]

Stream:

✔ Made PGP keys on the fly when it detected new From: address;
✔ Hid user’s PGP key in the outgoing email header.
✔ Automatically incorporated keys that were discovered.

Planned but never implemented:

➔ Alert user if a correspondent’s key changes.
➔ Automatically distribute and back up private keys.

The real problem with Stream was that PGP has poor penetration and poor usability.
Most of Stream’s goals can be achieved with S/MIME, by changing the certification model.

- S/MIME distributes certificates by sending them with signed mail.
- You need a transparent, zero-click way to make new certificates:
 - Option 1: create self-signed certificates.
 - Option 2: Some sort of automatic email answer-back system.
- You need an expert that watches the certificates used for signing and alerts on new \((\text{cert, addr})\) combinations.
CoPilot Implements the Key Continuation Management interface on top of Outlook Express.

New Key

Same Key

Changed key

No Key
Unfortunately, this interface creates a number of attacks.

Normal Communications
Unfortunately, this interface creates a number of attacks

New Key Attack: (Forged From:, New Cert)
Unfortunately, this interface creates a number of attacks.

New Identity Attack (From Hotmail, New Cert)
Unfortunately, this interface creates a number of attacks

3. Unsigned Message Attack

Unsigned Message Attack (Forged From:, No Cert)
Unfortunately, this interface creates a number of attacks

Can untrained end-users resist these attacks?
The original plan: Test KCM with Whitten’s “Why Johnny Can’t Encrypt” protocol.

- Scenario: A campaign volunteer sending out the schedule to other campaign workers.

- Whitten’s test subjects rapidly suspended their disbelief.

- Use Johnny as our control group: see if KCM has a higher success rate and lower spoof rate than PGP.
The idea of comparing results directly with Johnny didn’t quite work out.

- Johnny didn’t have an attacker
- Johnny didn’t use third-party certification — it used email answerback certification. (Therefore, Johnny only protected against a passive attacker.)
- Whitten said that the results were qualitative.
- Details of the original protocol had been lost.
The Johnny 2 Scenario:

It’s Whitten’s Scenario, except:

• The subject plays the role of a campaign volunteer.
• Three developed personas:
 - Maria The Campaign Manager.
 - Sarah Graphic artist.
 - Paul Campaign treasurer
 - Ben IT Coordinator.
• The enemy campaign tries to steal documents through a spoofing attack.
• The attacker pretends to be Paul, Sarah, and Maria in a series of escalating attacks.
Big Question to answer:

What will the users do when faced with the attacks?

New Key Attack
Attacker Paul says that he is having computer problems (new key, old email address).

New Identity Attack
Attacker Sarah says she is working from home and using Hotmail.

Unsigned Message Attack
Attacker Maria sends mail from her Campaign account, but it’s not signed.
Other questions that the *Johnny 2* scenario can answer:

- Do users understand the difference between *signing* and *sealing*?
- If users can trivially sign/seal their email, will they?
- If users can seal confidential information before they send it, will they be less concerned about the destination?
The big question we don’t need to answer:

Is it just as secure as CA model?

This isn’t a fair question...
...KCM doesn’t replace the CA, it replaces no crypto at all!
...If you have a CA, you can still use the CA model.
Johnny 2 User Study

Recruiting posters at MIT.

43 subjects aged 18–63
\(\bar{x} = 33, \sigma = 14.2 \)

19 Men, 24 Women

17 to 57 minutes
\(\bar{t} = 41, \sigma = 10.32 \)

Earn $20 and help make computer security better!

I need people to help me test a computer security program to see how easy it is to use. The test takes about 1 hour, and should be fun to do.

If you are interested and you know how to use email (no knowledge of computer security required), then call Simson at 617-876-6111 or email simsong@mit.edu.
Three Cohorts compared.

No Color

Color

Color + Briefing

A Green Border will appear around an email message each successive time that a particular Digital ID is used with an email address.
Scenario Message 1:
Greetings from Maria Page

Welcome to the Campaign!

From: Maria Page <mpage@campaign.ex.com>
Subject: Welcome to the Campaign!
To: ccord@campaign.ex.com
Cc: Paul Butler <butler@campaign.ex.com>, Ben Donnelly <bend@campaign.ex.com>, Sarah Carson <carson@campaign.ex.com>, Dana McIntyre <dni@campaign.ex.com>

This message is yellow because it is the first signed message that you have received from this email address.
The message was signed using Digital ID #3400.

Dear Campaign Coordinator.

Orients user and provides list of campaign worker roles.
Scenario Message 2: Maria sends the schedule

Tests to see if the subject can follow directions.
Scenario Message 3:
Ben asks for the schedule

Will the subject trust a legitimately signed message?
Scenario Message 4:
Attacker Paul asks for schedule

New Key Attack
(combined with a Reply-To: attack)
Scenario Message 5:
Attacker Sarah asks for schedule

New identity attack
Scenario Message 6:
Attacker Maria demands that schedule be sent to attackers Paul and Sarah

Unsigned message attack
Scenario Message 7:
Maria Page asks that schedule be sent to Sarah and Ben

Another test or “control” message
Scenario Message 8:
Maria Page thanks the subject

This proved to be a nice way to end the experiment.
Results, Task Comprehension:

Most subjects:

- Understood and enjoyed the scenario.
- Understood the concept of a “signed message” as authenticating the sender.
- Didn’t realize that signing prevented message modification.

Many people who were attacked didn’t realize it at all; some realized it after-the-fact.
Many users struggled to authenticate the new identity and unsigned messages.

- A few people looked at the digital signature using Microsoft’s certificate tools. They saw that the message was signed, but didn’t know what it meant.
- Many users tried Email answer-back. A few mistook Attacker Maria’s message for an answer to a message that was sent.
- Roughly half the users asked for the phone.
Well, we didn’t let them use the phone

“You pick up the Campaign Phone and discover that there is no dial tone. “You pick up your cell phone and discover that you have no coverage. “Apparently you cannot call any of the members of the campaign team at this time.”
KCM was very successful against the New Key Attack:

No Color

Color

Color + Briefing

A Red Border ... someone else is trying to impersonate the sender.

Rate of successful attack:

- 71%
- 64%
- 13%

\[p = 0.001 \]
KCM works well against the Unsigned Message Attack:

No Color

Color

Color + Briefing

A Gray Border ... someone else who is trying to impersonate the sender.

Rate of successful attack:

75% 58% 43%

\[p = 0.046 \]
KCM didn’t help against the New Identity Attack:

No Color

Color

Color + Briefing

A Yellow Border will appear around an email message the first time a particular Digital ID is used with an email address.

Rate of successful attack:

79%

50%

60%

\[p = 0.31 \]
The New Identity Attack is successful because the indicators are ambiguous!

- The attack matches a common situation in real-life.
- Subjects said that they knew there was a risk, but decided to ignore it.
- Only two noticed that Sarah’s name was misspelled!
Evaluating the Usability of Encryption:

- Suprisingly, more people in NoColor encrypted than in Color or Color+Briefing.
- It appears that they were (incorrectly) using encryption as a proxy for authentication.
- Many people were confused by the Sign and Encrypt buttons in the OE interface.

<table>
<thead>
<tr>
<th>Colort</th>
<th>n</th>
<th>Sometimes</th>
<th>Always</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoColor</td>
<td>14</td>
<td>50%</td>
<td>21%</td>
</tr>
<tr>
<td>Color</td>
<td>14</td>
<td>36%</td>
<td>36%</td>
</tr>
<tr>
<td>Color+Briefing</td>
<td>15</td>
<td>20%</td>
<td>13%</td>
</tr>
</tbody>
</table>

$p = 0.087$ \hspace{1cm} 0.59
Interesting failings:

• Subjects were confused regarding single-click vs. double-click. They would double-click the “encrypt” button to no result!
• Subjects wanted to know how to make a Digital ID for Attacker Paul so they could send him the schedule!
Evaluation of CoPilot’s Interface:

• People liked the colors, didn’t read the text, and didn’t understand the button
• People ignored the headers
• Serious confusion on commands vs. status on buttons
• Heavy users of web mail were the most confused.
Conclusion and Recommendations:

• We’ve previously argued that much commercial mail sent by eBay, Amazon, etc., should be signed.

• Johnny 2 shows that people can understand and use KCM with little or no training.

• S/MIME is much more usable than people give it credit.

• The hard thing is getting a certificate.

• KCM gives people certificates automatically, but leaves them susceptible to the New Identity Attack. (This is the phishing problem.)
Deployment Strategies:

• You could build this in right now.

• Or Microsoft & Thawte could work together to make it easier for people to get email-only certificates.
We can improve usability and security by making better use of the tools we have already deployed.

Merchants like Amazon, eBay and PayPal should use S/MIME to sign their outgoing mail.

Most of what key continuity management offers can be accomplished with e-mail only S/MIME certificates.

A “CoPilot” that explains what certificates means can increase understanding, which increases usability and security.

Acknowledgements: Rob Miller, David Clark

Questions?