Minimal Assumptions for Cryptographic Tasks and Provable Security in Realistic Models

Dana Dachman-Soled
Microsoft Research New England

Joint Work with Yael Tauman Kalai, Yehuda Lindell, Tal Malkin, Mohammad Mahmoody
Cryptography

• Public Key Encryption

• Digital Signatures

• Secure Multiparty Computation
Provable Security

• Ideal: Prove that a cryptographic scheme cannot be broken by any efficient attacker.

• Actually: Our proofs require assumptions.
 – “Factoring is hard”: $p \cdot q = n$

• “If an attacker succeeds in breaking ______ the attacker can be used to break ______.”

• This is called a reduction.

\[
\text{probabilistic polynomial time or polynomial sized circuit}
\]
Computational Assumptions

• **Specific** hardness assumptions
 – Factoring is “hard”: $n = p \cdot q$; find p, q
 – Discrete log is “hard”: $g \in G, g^x$; find x

• **Generic** hardness assumptions
 – OWF exist: Functions that are easy to compute but hard to invert.

• Constructions based on generic OWF must work when OWF is instantiated with any particular candidate OWF.
Roadmap

• Foundational Questions
 – Limits of Provable Security: Minimal Assumptions
 – OWF vs. Optimally Fair Coin-Tossing
 – New directions

• Towards More Realistic Models
 – Cryptography against Physical Attacks
 – Tamper Resilient Circuits
 – New directions
Roadmap

• Foundational Questions
 – Limits of Provable Security: Minimal Assumptions
 – OWF vs. Optimally Fair Coin-Tossing
 – New directions

• Towards More Realistic Models
 – Cryptography against Physical Attacks
 – Tamper Resilient Circuits
 – New directions
Minimal Assumptions

• What can be constructed assuming only one-way functions (OWF)?
• What requires stronger assumptions?
• Why should we care?
Case: PKE from any OWF?

\[(SK, PK) \leftarrow \text{Gen}(1^k)\]

\[C = \text{Enc}_{PK}(m)\]

\[\text{Dec}_{sk}(C) = m\]

- Despite much effort, no known reduction from PKE to OWF.
- Can we prove that it is impossible?
Proving Impossibility Results

- Prove: “There is no construction of PKE from OWF”
- How to formalize?
 - First attempt: Prove $OWF \nrightarrow PKE$
- Problem:
 - Hard to prove OWF exists (implies $P \neq NP$)
 - We believe that PKE exists!
- Instead, we prove “hardness of proving”.
- Show that “standard approaches” of proving $OWF \rightarrow PKE$ will fail!
1. **Black-Box Construction**: PKE scheme E from OWF f

PKE scheme E gets “black-box” access to the OWF f.

SK

Alice

$f(x_A)$

$Dec_{sk}(C) = m$

Bob

$f(x_B)$

$C = Enc_{PK}(m)$

PK
2. Black-Box Analysis: Reduce Security of E to Security of f

Present a reduction R such that:

If there is an adversary Eve that breaks security of E

Then R, given oracle access to Eve and f, breaks security of f.

$y = f(x)$

x

Reduction R

Note: Reduction must work even if f, Eve are inefficient!
Roadmap

• Foundational Questions
 – Limits of Provable Security: Minimal Assumptions
 – OWF vs. Optimally Fair Coin-Tossing
 – New directions

• Towards More Realistic Models
 – Cryptography against Physical Attacks
 – Tamper Resilient Circuits
 – New directions
Our Focus: Coin Tossing

- Is there a black-box reduction from Optimally Fair Coin Tossing to OWF.

- **Coin Tossing:**
 - The output of an honest party is 0 or 1 with probability $\frac{1}{2}$ (= “Fair coin toss”, “bias = 0”)
 - If both parties follow the protocol, they have the same output.

- **Basic Primitive**

- **Used frequently in MPC protocols.**

Joint work with Yehuda Lindell, Tal Malkin, Mohammad Mahmoody
Preliminaries: Commitment

• Digital analogue of a lockbox

Commit to value V

Hiding: Bob doesn’t know what’s in the box

Decommit to value V

Binding: Alice can reveal at most one value V

• Can be constructed in a black-box manner from OWF.
Blum’s Coin-Tossing Protocol (“Over the Telephone”)

Alice

Output:
\(coin_A \oplus coin_B\)

Bob

Output:
\(coin_A \oplus coin_B\)

Fairness? If execution completes, Alice cannot bias coin due to binding of commitment. Bob cannot bias coin due to hiding.

But what if Bob must output a value even in the case that Alice aborts?
Blum’s Coin-Tossing Protocol ("Over the Telephone")

In this case, Alice can impose bias of \(\frac{1}{4}\).

Note: Black-Box construction from OWF
What is known

• [Cleve86] showed Blum’s protocol can be extended to get bias $O(1/\sqrt{r})$ in r rounds from OWF

• [Cleve86] lower bound tells us bias is always at least $\Omega(1/r)$ in r rounds
 – Define “optimally-fair coin tossing”: coin tossing with bias $O(1/r)$.

• Until recently, not known if it was possible to achieve bias $O(1/r)$
 – [MNS09] based on work of [GHKL08] constructed protocol that achieves $O(1/r)$ bias.
 – Protocol uses generic MPC, and thus relies on stronger assumptions.
Open questions

• Can we get bias of $O(1/r)$ in r rounds from just OWF?

• Are stronger assumptions necessary for bias of $O(1/r)$?

In our work, we focus on the question:

Is there a **black-box construction** of optimally-fair coin-tossing from **OWF**?
Main Result:

Theorem (informal): Any black-box construction of Optimally Fair Coin-Tossing from OWF will require at least $\Omega(n/\log n)$ rounds.

- Regular coin-tossing requires only 1 round.
- Optimally fair coin-tossing for any number of rounds can be constructing using stronger assumptions.
Proof Intuition

Consider: Random Oracle Model

Goal:
Given any BB construction, show strategies for either Alice or Bob to impose bias $\Omega\left(\frac{1}{\sqrt{r}}\right)$.

Note: Alice and Bob may be computationally unbounded, but must make “few” queries to oracle f.
Cleve, Impagliazzo 93 Result

[CI93]: For every r-round coin-tossing protocol, there is a strategy for either Alice or Bob to impose bias $\Omega\left(\frac{1}{\sqrt{r}}\right)$.

Alice and Bob are assumed to be **Computationally Unbounded**

Strategies for A, B involve computing *expected value of coin toss* conditioned on *current transcript* at each pass.

Expected value of outcome given M_1, M_2, M_3
Proof Intuition

Goal: Given any BB construction, show strategies for either Alice or Bob to impose bias $\Omega\left(\frac{1}{\sqrt{n}}\right)$.

Idea: Use [CI93] result in the Random Oracle Model

• Issue: Recall [CI93] strategies involve computing expected values. Computing these values must involve making “many” queries since it may involve inverting f.

• Solution: Instead of taking expectations over a fixed oracle, we include the randomness of the oracle in the expectation.
Idea: Use [CI93] result in the Random Oracle Model

- **Issue:** [CI93] result critically relies on the fact that the views of A and B are independent conditioned on the current transcript. This is not true in the presence of a random oracle.

- **Solution:** Idea—add queries to transcript to ensure that the views of A and B are (nearly) independent conditioned on the current transcript.

Goal:
Given any BB construction, show strategies for either Alice or Bob to impose bias $\Omega(\frac{1}{\sqrt{r}})$.

Proof Intuition
Summary

• We prove that any **black-box** construction of optimally-fair coin-tossing from OWF will require at least $\Omega(n/\log n)$ rounds.

• This is in contrast to (unfair) coin-tossing which can be constructed from OWF in 1 round.

• Our techniques extend to rule out constructions for a **general class** of 2-party protocols with $o(n/\log n)$ rounds.
More Impossibility Results

- OWF / KA [IR89], [BM09]
- OWF / CRHF [Simon98]
- PKE / OT [GMRV00]
- PKE / TDF [GMR01]
- OWF / stat. commitment with $o(n/\log n)$ rounds [HHRS07]
- TDP / IBE [BPRVW08]
- TDF / correlated products [Vahlis10]
- Simulatable PKE / Deniable PKE [D12]
- . . .
Roadmap

• Foundational Questions
 – Limits of Provable Security: Minimal Assumptions
 – OWF vs. Optimally Fair Coin-Tossing
 – New directions

• Towards More Realistic Models
 – Cryptography against Physical Attacks
 – Tamper Resilient Circuits
 – New directions
1. **Arbitrary Construction**: PKE scheme E from OWF f

Alice

OWF: f

![SK](image1)

Bob

OWF: f

PK

$C = Enc_{PK}(m)$

$Dec_{sk}(C) = m$

PKE scheme E gets access to the code of the OWF f.

New Directions—Turing Reductions
2. Semi BB Analysis: Reduce Security of E to Security of f

Present an efficient reduction R such that:

If there is an adversary Eve that breaks security of E,

Then R, using BB access to Eve and (nonBB access to) code of f, breaks security of f.

Note: Reduction must work even if Eve is inefficient.
New Directions—Turing Reductions

• [Pass, Tseng, Venkit., 11] showed that under very strong assumptions can rule out Turing reductions between some primitives.
 – Rule out Turing reductions from OWP to OWF
 – Rule out Turing reductions from CRHF to OWF
• Note: In this setting assumptions are necessary
 – Minimally, must assume OWF exists.
• [PTV11] assume existence of OWF with specific strong properties.
Open Questions

• Can we rule out Turing reductions of PKE to OWF?
• Can we rule out other general types of reductions that go beyond BB reductions?
• New proof techniques for both positive and negative results:
 – Positive: New ways to leverage code of OWF or code of adversary?
 – Negative: New results on obfuscation?
Roadmap

• Foundational Questions
 – Limits of Provable Security: Minimal Assumptions
 – OWF vs. Optimally Fair Coin-Tossing
 – New directions

• Towards More Realistic Models
 – Cryptography against Physical Attacks
 – Tamper Resilient Circuits
 – New directions
Roadmap

• Foundational Questions
 – Limits of Provable Security: Minimal Assumptions
 – OWF vs. Optimally Fair Coin-Tossing
 – New directions

• Towards More Realistic Models
 – Cryptography against Physical Attacks
 – Tamper Resilient Circuits
 – New directions
Protecting Circuits against Physical Attacks

Traditional view of cryptography:
Attacker interacts with honest parties in a black-box manner.

* Joint work with Yael Tauman Kalai.
Protecting Circuits against Physical Attacks

Traditional view of cryptography:
Attacker interacts with honest parties in a **black-box** manner.

Towards more realistic models:
Attacker may have **physical** access to honest party.

Only get to observe input-output behavior.

Can run physical attacks which may compromise security.
Examples of Physical Attacks

• **Leakage attacks**—passively leak some function of the honest party’s secret state:
 – Timing attacks [Kocher96,...]
 – Power attacks [Kocher-Jaffe-Jun99,...]
 – Acoustic attacks [Shamir-Tromer04]

Remote RSA Timing Attacks Practical

 Posted by CowboyNeal on Thursday March 13 2003, @08:06PM from the all-in-the-timing dept.
Examples of Physical Attacks

- **Tampering attacks**—actively disrupt honest party’s computation while observing input/output behavior.
 - Fault attacks [Boneh-DeMillo-Lipton97, Biham-Shamir98, ..]
 - Radiation attacks

1024-bit RSA encryption cracked by carefully starving CPU of electricity

By Sean Hollister posted Mar 9th, 2010 at 2:47 AM

- Our main result focuses on protecting circuits against tampering.
Roadmap

• Foundational Questions
 – Limits of Provable Security: Minimal Assumptions
 – OWF vs. Optimally Fair Coin-Tossing
 – New directions

• Towards More Realistic Models
 – Cryptography against Physical Attacks
 – Tamper Resilient Circuits
 – New directions
Our Results

Need to define:

1. Tampering model
2. Security guarantee
Our Results

Need to define:

1. Tampering model
2. Security guarantee
Our Model: Private Circuits

- Introduced by Ishai, Prabhakaran, Sahai, Wagner 2006
- Attack Model: i-th run of circuit C_s
Our Model: Private Circuits

- Introduced by Ishai, Prabhakaran, Sahai, Wagner 2006
- Attack Model: i-th run of circuit C_s

May tamper with a constant fraction of individual wires

Choose tampering function

Feedback to memory

Public input

x_i

Secret s_i

Memory
Our Model: Private Circuits

- Introduced by Ishai, Prabhakaran, Sahai, Wagner 2006
- Attack Model: i-th run of circuit C_s
Our Results

Need to define:

1. Tampering model
2. Security guarantee
For every \(S_{cm} \), present a simulator \(Sim \) s.t.

\[
S_{cm}, L(s) \approx \]

Only \(\log \) bits of leakage

- \(\log \) bits of leakage?
- Previous work of [IPSW06]: No leakage, but tampering rate of \(1/|C| \).
Our Results

1. Resilient to constant tampering rate
2. Information theoretic
Overview of our Construction

Starting point [IPSW06]:

Add tamper-detection component that erases memory if tampering is detected.

We show:

Tamper-detection component in NC^0

circuit of constant size
Tamper-Detection Component

Tool: PCP of Proximity—proof of correctness with special properties

[Ben-Sasson, Goldreich, Harsha, Sudan, Vadhan, 06]

Computes a PCP of Proximity for $C(x) = y$
Tamper-Detection Component

Tool: PCP of Proximity

[Ben-Sasson, Goldreich, Harsha, Sudan, Vadhan 06]

\[C_{PCPP}^{}(x) = \beta \]

- Memory
- Secret s
- Public input

Compiler

PCPP for $C(x) = b$

- Memory
- Secret s
- Public input
Memory: $S = \text{ECC}(s)$

Input: x

$X = \text{ECC}(x)$

G_{cas}

G_{out}

PCPP Computation

Circuit Computation

Error Cascade

PCPP Verification

Output: \tilde{b}

Encoding of Input

Input: x
• Resilient to constant tampering rate.

• Information theoretic

• Extend to leakage + tampering (in the paper)
Roadmap

• Foundational Questions
 – Limits of Provable Security: Minimal Assumptions
 – OWF vs. Optimally Fair Coin-Tossing
 – New directions

• Towards More Realistic Models
 – Cryptography against Physical Attacks
 – Tamper Resilient Circuits
 – New directions
New Directions—Better Models

• Better theoretical models for leakage and tampering that capture actual attacks.
• Can we relax security requirements so that blowup in computational resources is reduced?
• Requires better knowledge of EE and actual chip design.
New Directions: Physical Attacks in MPC Setting

Can we give meaningful security guarantees in this setting? Privacy of inputs, correctness of computation, etc.

[BGJK12, BCH12]
Thank you!